Сегодня: г.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

Идея черных дыр восходит к 1783 году, когда кембриджский ученый Джон Мичелл осознал, что достаточно массивный объект в достаточно маленьком пространстве может притягивать даже свет, не давая ему вырваться. Спустя более века Карл Шварцшильд нашел точное решение для общей теории относительности Эйнштейна, которое предсказало такой же результат: черную дыру. Как Мичелл, так и Шварцшильд предсказали явную связь между горизонтом событий, или радиусом области, из которой свет не может вырваться, и массой черной дыры.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

На расстоянии в 55 миллионов световых лет, предполагаемая масса этой черной дыры в 6,5 миллиарда раз превышает солнечную. Физически это соответствует размеру, превышающему размер орбиты Плутона вокруг Солнца. Если бы черной дыры не было, свету понадобилось бы около суток, чтобы пройти через диаметр горизонта событий. И только потому, что:

  • у Телескопа горизонта событий достаточно разрешающей способности, чтобы увидеть эту черную дыру
  • черная дыра сильно излучает радиоволны
  • очень мало радиоволновых излучений на фоне, чтобы помешать сигналу

мы смогли соорудить этот первый снимок. Из которого теперь мы извлекли десять глубоких уроков.

Мы узнали, как выглядит черная дыра. Что дальше?

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

Гравитационная динамика звезд дает хорошие оценки для масс черной дыры; наблюдения газа — нет. До первого изображения черной дыры у нас было несколько различных способов измерения масс черных дыр.

Мы могли либо использовать измерения звезд — вроде отдельных орбит звезд возле черной дыры в нашей собственной галактики или линии абсорбции звезд в M87 — которые давали нам гравитационную массу, либо выбросов из газа, который движется вокруг центральной черной дыры.

Как для нашей галактики, так и для M87, эти две оценки были очень разными: гравитационные оценки были на 50-90% больше, чем газовые. Для M87 измерения газа показали, что масса черной дыры составляет 3,5 миллиарда солнц, а гравитационные измерения были ближе к 6,2 — 6,6 млрд. Но результаты EHT показали, что черная дыра имеет 6,5 миллиарда солнечных масс, а значит, гравитационная динамика — прекрасный индикатор масс черных дыр, но выводы по газу смещаются в сторону более низких значений. Это прекрасная возможность пересмотреть наши астрофизические предположения об орбитальном газе.

?t=2

Это должна быть вращающаяся черная дыра, и ее ось вращения указывает в сторону от Земли. Посредством наблюдений горизонта событий, радиоизлучения вокруг него, крупномасштабного джета и расширенных радиоизлучений, измеренных другими обсерваторий, EHT определила, что это черная дыра Керра (вращающаяся), а не Шварцшильда (не вращающаяся).

Не ни единой простой черты черной дыры, которую мы могли бы изучить, чтобы определить эту природу. Вместо этого нам приходится строить модели самой черной дыры и вещества вне ее, а затем развивать их, чтобы понять, что происходит. Когда вы ищете возможные сигналы, которые могут проявиться, вы получаете возможность ограничивать их так, чтобы они согласовались с вашими результатами. Эта черная дыра должна вращаться, а ось вращения указывает от Земли примерно на 17 градусов.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

Видимое кольцо демонстрирует силу гравитации и гравитационное линзирование вокруг центральной черной дыры; и снова ОТО прошла испытания. Это кольцо в радиодиапазоне не соответствует самому горизонту событий и не соответствует кольцу вращающихся частиц. И это также не самая стабильная круговая орбита черной дыры. Нет, это кольцо возникает из сферы гравитационно линзируемых фотонов, пути которых искривляются гравитацией черной дыры по дороге к нашим глазам.

Этот свет изгибается в большую сферу, чем можно было бы ожидать, если бы гравитация была не такой сильной. Как пишет в работе Event Horizon Telescope Collaboration:

«Мы выяснили, что больше 50% общего потока в арксекундах проходит вблизи горизонта и что это излучение резко подавляется при попадании в эту область, в 10 раз, что является прямым доказательством предсказанной тени черной дыры».

Общая теория относительности Эйнштейна в очередной раз оказалась верной.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

EHT в будущем раскроет физическое происхождение вспышек черных дыр. Мы увидели, как в рентгеновском, так и в радиодиапазоне, что черная дыра в центре нашего собственного Млечного Пути испускает кратковременные вспышки излучения. Хотя самое первое представленное изображение черной дыры показало сверхмассивный объект в M87, черная дыра в нашей галактике — Стрелец А* — будет такой же большой, только меняться будет быстрее.

По сравнению с массой M87 — 6,5 миллиарда солнечных масс — масса Стрельца А* будет всего 4 миллиона солнечных масс: 0,06% от первой. Это значит, что колебания будут наблюдаться уже не в течение дня, а в течение даже одной минуты. Особенности черной дыры будут меняться быстро, и когда произойдет вспышка, мы сможем раскрыть ее природу.

Как вспышки связаны с температурой и светимостью радиокартины, которую мы увидели? Происходит ли магнитное пересоединение, как в выбросах корональной массы нашего Солнца? Что-нибудь разрывается в потоках аккреции? Стрелец А* вспыхивает ежедневно, поэтому мы сможем связать все нужные сигналы с этими событиями. Если наши модели и наблюдения будут такими же хорошими, какими они оказались для M87, мы сможем определить, что движет этими событиями и, возможно, даже узнаем, что падает в черную дыру, создавая их.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

Усовершенствование Event Horizon Telescope покажет наличие других черных дыр вблизи галактических центров. Когда планета вращается вокруг Солнца, это связано не только с тем, что Солнце оказывает гравитационное воздействие на планету. Всегда есть равная и противоположная реакция: планета оказывает воздействие на солнце. Точно так же, когда объект кружит вокруг черной дыры, он также оказывает гравитационное давление на черную дыру. В присутствии целого набора масс возле центров галактик — и, в теории, множества невидимых пока черных дыр — центральная черная дыра должна буквально дрожать на своем месте, будучи растаскиваемой броуновским движением окружающих тел.

Сложность проведения этого измерения сегодня заключается в том, что вам нужна контрольная точка для калибровки вашего положения относительно местоположения черной дыры. Техника для такого измерения подразумевает, что вы смотрите на калибратор, затем на источник, снова на калибратор, снова на источник и так далее. При этом перемещать взгляд нужно очень быстро. К сожалению, атмосфера меняется очень стремительно, и за 1 секунду многое может измениться, поэтому вы просто не успеете сравнить два объекта. Во всяком случае, не с современными технологиями.

Но технологии в этой области развиваются невероятно быстро. Инструменты, которые используются на EHT, ожидают обновления и, возможно, смогут достичь необходимой скорости к середине 2020-х годов. Эта загадка может быть решена к концу следующего десятилетия, и все благодаря улучшению инструментария.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

Внеся необходимые улучшения, вместо 2-3 галактик мы сможем находить сотни черных дыр или даже больше. Будущее фотоальбомов с черными дырами кажется ярким.

Проект Телескопа горизонта событий был дорогим, но он окупился. Сегодня мы живем в эпоху астрономии черных дыр и наконец-то смогли наблюдать их воочию. Это только начало. Подпишитесь на наш канал в Телеграме, чтобы получать все новости с этого невидимого фронта.

Источник

 
Статья прочитана 75 раз(a).
 

Еще из этой рубрики:

 

Здесь вы можете написать отзыв

* Текст комментария
* Обязательные для заполнения поля

Последние Твитты

Loading

Архивы

Наши партнеры

Читать нас

Связаться с нами

Написать администратору